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The automorphic and power-law rheological models are discussed which enable definition of the 
Reynolds number having the same physical meaning as the one known from the hydrodynamics 
of Newtonian liquids. On an example it is demonstrated that such types of rheological models 
can be constructed, which represent qualitatively also the visco-elastic and thixotropic behaviour 
of materials. 

In our previous work! we have made an effort to formulate as generally as possible 
the theory of similarity of non-Newtonian flows and we limited ourselves to the tech
nically interesting category of isotropic incompressible materials. The primary result, 
important for a technician facing the problem to model experimentally a certain 
hydrodynamic situation, are the conditions of exact modelling 

He = QU~/,r[ = idem, (1) 

(2) 

(3) 

together with conditions of rheological similarity, i.e. H+ [ ... J = idem, the part 
of which is Ve = D(r[ = idem, and conditions of similarity of complementary condi
tions!, i.e. the conditions of geometrjc~l similarity, kinematic similarity of boundary 
conditions, symmetry conditions etc. 

It is obvious that neither the explicit and quantitative formulation of all rheological 
properties of studied materials is possible, nor fulfilling of all conditions of exact 
modelling in cases when for an engineering experiment a model liquid must be used. 
Some aspects of approximate modelling of non-Newtonian flows are therefore dis
cussed here, based on substitutive constitutive relations to which certain functional 
properties are ascribed. 

Part I: This Journal 37,784 (1972). 
Present address: University of Salford, Salford, U. K. 
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Similarity of Non-Newtonian Flows. II. 1107 

GENERALIZED NEWTONIAN LIQUIDS 

The category of Generalized Newtonian Fluids2 (GNF-materials) is the category 
of idealized non-Newtonian materials with all their rheological properties assumed 
to be expressed in the form 

or = 110, (4) 

where the dependence of apparent viscosity 1], 

I] == riD, (5) 

on the second invariant of the tensor of shear rate D = (to: 0)1 /2 resp. of shear 
stress r = (tor : or)1 /2, expressed in the form 

11 =IJ[D] or I] = I][r] , (6a, b) 

is the material property. 

The rheological similari ty1 of two GNF-materials is in general stipulated by the 
possibility to find for them two material constants - the characteristic shear rate D" 
characteristic shear stress r" resp. characteristic viscosity 1], = rd D) so that dimension
less relations between DID), r/r, resp. 1]11], would be identical. The apparent dimen
sionless viscosity m, dimensionless shear rate p and dimensionless shear stress 8 are 
introduced by relations 

(7a, b, c) 

according to which the conditions of rheological similarity of GNF-materials can be 
formulated in one of equivalent forms 

m[p] == idem, m[8] == idem, 8[p] == idem. (8a , b, c) 

As it has been explained in our previous work 1 , it is advisable in developing the normalized 
mathematical flow model, to normalize the quantities included in the differential momentum 
balance 

(! (~ + v . Y'v) = - Y' P + Y' . , (9) 

with the use of operating parameters Uc' Rc' Pc, t c' whenever possible. Especially, the tensor of 
shear rate and its second invariant are normalized into the form 

(lOa, b) 

The rheological constitutive relation (4) can be written in a form enabling its substitution into 
the relation (9) which is 

(J 1a) 
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1108 Wein, Mitschka, Ulbrecht: 

or, with normalized variables, as 

(I/b) 

The momentum balance for GNF-materials is the result of substitution of Eq. (llb) 
into (9) and normalization of the resulting equation by the 'term 'I 

He - - + v* . V*v* = - Cr V* P* + B V* . (m[BD*] 0*) , 
(

1 8v* ) 
St 8t* 

(12) 

where all quantities with the asterisk "*,, are normalized by use of the operating 
parameters, and where the dimensionless criteria of dynamic similarity are defined 
by relations (1)-(3) and (13): 

(13) 

Some authors3
•
4 introduce the Reynolds number in the form 

(14) 

This formulation cannot be considered fully suitable as it gives an impression that 
the ReI defined in this way has the character of a criterion determining generally the 
flow regime in the sense of transition of laminar-turbulent regimes, and measuring 
the effect of inertia forces in comparison with the forces of viscous friction as it is 
usual in the hydrodynamics of Newtonian liquids. The regime of steady flow for 
GNF-materials is obviously in general controlled by a pair of dimensionless criteria 
(He, B) resp. (ReI' B) and by the condition of rheological similarity m(p) == idem. 

Both for rheologically similar GNF-materials and for steady flows it is necessary 
to fulfill two modelling conditions, for inst. (1) and (2) and thus scalling-up i.e. per
forming the model experiments with the use of original liquid is in general impossible. 
This is a significant difference from modelling of steady Newtonian flows with the 
use of Reynolds number in cases where it is not necessary to take into account the 
dynamics of the free liquid surface (for example for flow in closed channels, for flow 
through a bed of granular material, in mixing in narrow vessels etc.) and where it is 
sufficient to fulfill the modelling rule ReUe = const. 

In case of steady flows with negligible effects of inertia forces, when Re. ~ 1, 
the modelling of Newtonian flows is not limited by any dynamic modelling condition 
while for GNF-materials B = idem must be generally fulfilled i.e. scalling-up with 
the same liquid must be realized at Ue/Re = const. 

Further on we concentrate our attention to such formalisms in description of rheo
logical properties which would permit the mentioned scalling-up and would generally 
give simpler exact modelIing conditions. Rheological models based on such descrip-
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Similarity of Non-Newtonian Flows. 11. 1109 

tion can, though they do not mostly express the rheological properties of studied 
materials exactly, be used as the initial mathematical model in formulation of condi
tions of approximate hydrodynamic similarity5 - 8. 

AUTOMORPHIC GNF-MATERIALS 

Functional relation z = f(x) between a pair of real positive numbers x, z is automorphic if a func
tion g(x) exists, so that for any arbitrary real x, y 

f(x . y) = f(x) . g(y) (15) 

holds. By substitution x = l into relation (15) follows that the relation (J 5) can be generally 
written in a form 

f(x . y) = f(x) . f(y)/f(l) . (16) 

By substitution y = l/x into relation (16) follows 

f(l/x) = f2(l)/f(x), and thus as well f(x/y) = f(l) . f(x)/f(y) . (fla,b) 

Let the dimensionless viscosity characteristics m = ma(p) be automorphic. The 
corresponding dimensional relation can be written according to (11 a) as 

(18a) 

or, with the use of relation (17b), in the form* 

(18b) 

from which it follows that the automorphic viscosity characteristics has only one 
material constant K. 

(18e) 

unlike the general case when a non-automorphic viscosity characteristics has two 
parameters. Trivial example of an automorphic function is given by Newtonian liquids, 
where m. = const. and according to the relation (18e) Ka = TI/D1 = fl.. 

It is known9 ,lO that to an arbitrary system of physical quantities the so-called coherent 
system of units exists which enables to express relations between these quantities in the same 
form as relations between the numerical values of these quantities, i.e. without conversion factors. 
Therefore it is possible to apply without modifications the definition of automorphic relations 
introduced for numbers also to relations between physical, dimensional quantities. It is, of course~ 

necessary to ascribe to automorphic relations certain dimensional transformation properties 
which are obvious at best in special cases presented in the following paragraphs. 
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1110 Wein, Mitschka, Ulbrecht: 

By using the properties (16), (17) of a automorphic viscosity characteristics, the 
normalized differential momentum balance can be modified into the form 

Rea - . - + v*. V*v* = - Cra V*p* + V*. (l11a[D*]. D*), (
1 av* ) 
St at* 

(19) 

Re = He ma[1] = (lUcRe 
a B l11a[B] Kal11a[UcIRc] 

(20) 

Cr = A ma [1] = Pc 
a B l11a[B] Ka(UcIRc) l11a[UcIRc] 

(21) 

where only Rea (resp. only Cra) acts as an independent dimensionless criterion. 
In hydrodynamic situations when in Newtonian liquids the Reynolds number Re 

is the only determining dimensionless criterion, for automorphic GNF-materials as 
well Rea is the only one. If the way is compared in which Re and Rea are intro
duced into the normalized differential momentum balance it can be generally expected 
that Rea is similar to Re, i.e. that it characterizes the ratio of inertia and internal 
friction forcess', while in relation (19) there is no other independent criterion He to 
which the same role could be ascribed. 

The hydrodynamics of automorphic GNF-materials has, beside the possibility 
of introducing the generalized Reynolds number another important aspect. In case 
of creeping flows, Rea -4 0, the relation (19) takes the form 

Cra V*p* + V*. (l11a[D*] D*) = 0, (n) 

from which by solution for given boundary conditions, or by a single experiment 
the numerical value Cra characterizing the dynamics of creeping flow can be deter
mined. Dependence of Pc on other parameters can in this case be expressed in the form 

(23) 

i.e. in the same form as the dependence of"C on D in the corresponding automorphic 
viscosity characteristics 

"C = KaDma[D] , (24) 

while for general GNF-materials the form of dependence 

Cr = Cr(B) (25) 

must be determined experimentally resp. by solution of corresponding mathematical 
model in the whole required range of numbers B resp. of corresponding values VclRc. 

Collection Czechoslov. Chern. Cornrnun. /VoL 371 (1972) 
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POWER-LAW MODEL 

The presented results would be undoubtedly very interesting if it were possible to 
find a sufficiently wide class of automorphic functions expressing the course of vis
cosity characteristics of real liquids. Let us start with the functional definition (16) 
of the automorphic function and let us try to find sufficiently wide class of their 
specific courses. 

For physical reasons it is obvious that we are limited to continuous and continuous
ly differentiable functions. Differentiation of an automorphic function f.(x) can be, 
by successive modifications and by use of its property (16), expressed in the form 

dfa(x) f.(x) f~(l) 
d;- = ~ . f.(1) , 

i.e. as a differential equation 

dlnfa(x) = q = d In fa(x) I ' 
d In x d In x I x ~ I 

(26) 

whose constant parameter q has the meaning of the value of logarithmic derivative 
at the point x = 1. General solution of this differential equation which represents 
as well the class of all continuous and continuously differentiable automorphic 
functions, has the form of a power function with parameters q and k 

fa(x) = kxq
• (27) 

In case of GNF-material we obtain the already known results, i.e. the expression 
of the course of viscosity characteristics in the form 

(28) 

where 11 = q + 1 is the so-called flow index 5
,6, resp. in the form 

1: = KD", (29) 

and the formulation of the generalized Reynolds number in the form 5
•
6

, ll 

(30) 

and the dimensionless number Cr' in the form 12 

(31) 

The presented analysis is useful as the resulting relations (30), (31) are not obtained 
only by methods of dimensional analysis but because they result from certain func-

Collection czechoslov. Chern. Commun. /Vol. 37/ (1972) 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



1112 Wein, Mitschka, Ulbrecht: 

tional properties (automorphy) of the constitutive equation. It further indicates the 
way how to look for useful forms of constitutive relations also in more complex 
cases when it is intended to include into the engineering analyses also other more 
complicated rheological phenomena. 

We do not know the way how to find in an arbitrary class of constitutive relations 
those which would be automorphic in the mentioned sense. But it becomes obvious 
that by assumptions based only on dimensional analysis at least the formulation 
of some properties may be obtained the automorphic constitutive relations would 
or could have. 

From the functional point of view it is possible to formulate Rea by Eq. (20) and 
it is possible for creeping flows to find the dependences between the operating para
meters in the form (23) with the condition of automorphic properties (16) of the 
viscosity characteristics (18). From the dimensional point of view, when we have 
already found the power-law as the most general automorphic non-linear function, 
the definitions of Re' by Eq. (30) and of the dependently variable criterion Cr' for 
creeping flows (31) arethe consequence of the fact that the corresponding constitutive 
relations include only. one dimensional parameter K. It is therefore quite appropriate 
to ask whether it is possible to formulate constitutive relations with only one 
dimensional parameter K, which would describe more complicated rheological 
phenomena than is the simple non-linearity of the viscosity characteristics. 

EXAMPLE OF VISCO-ELASTIC AUTOMORPHIC MATERIAL 

Th~ theory of viscometric flowS 23 postulates the existence of at most three material viscometric 
functions by the use of which the dynamics of these flows can be fully described. The opinion 
on physical meaning of these material functions, of the viscosity characteristics, 

'12 = ,[DI (32a) 

of the first and second difference of normal stresses 

(32b, c) 

IS based on the simple shearing flow where index 1 corresponds in the mentioned relations to the 
Cartesian coordinate Xl vertical to undeformed mutually sheared planes, analogically Xz is the 
Cartesian coordinate in the direction of the velocity of flow, and x3 is an indifferent coordinate, 
vertical to Xl and x2' 

The most general automorphic system of viscosimetric functions, i.e. including only a single 
,dimensional parameter has obviously the form 

(33a, b, c) 

where beside the dimensional constant K the flow index n and other two dimensionless parameters 
cr. 1 and cr. z appear. At the first sight the constitutive assumption formulated by relations (33a,b,c) 
seems to be rather forcible because for example the theory of second-order viscoelastici ty 14 leads 
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Simila.\"ity of Non-Newtonian Flows. II. 1113 

to expression of visco metric functions in the form 

(34a, b, c) 

which obviously are not in relation with equations (33a, b, c) neither for 11 = 1. However, 
a number of non-Newtonian liquids lS are known whose viscosity characteristics for very small 
D agree with relation (34a), but for rather large D their course can be expressed by the use of 
a power-law, n :j= I, in a relatively wide range of shear rates. Therefore, there is no reason why 
to eliminate the possibility to describe the course of viscometric functions by the system of rela
tions (33a, b, c). 

The description of viscoelastic properties of polymer solutions is by a number of engineering 
oriented authors, e.g. Metzner, Uebler and Fong16 based on the modified Maxwell model 

Dr 
r + t0nt = 1/0, (35) 

where the apparent viscosity 1/ and the relaxation time to are material constants or material func
tions of the invariant D. The relaxation time is usually found from viscometric experiments, 
using Truesdell's t 7 definition in the form 

(36) 

In the case when the automorphy of viscometric material functions according to Eq. (33) can be 
accepted, relation (36) takes the form 

(37) 

It is interesting and it supports the possibility to use automorphic relation also for description 
of more complex rheological phenomena, that experimental dependence of to on D, mentioned 
by Metzner16 for three different visco-elastic polymer systems can be approximately correlated 
according to relation (37) as it follows from Fig. 1, where the data published by Metzner16 are 
plotted. The automorphic modification of the Maxwell model can be thus written, for example, 

to,s 

10' 10' 10' . 10' 
D,s" 

Flq.l 

Dependence of Relaxation Times to on Shear Rate D (according to
(6

) 

1 0·29% Carbopol 941 in water, 20·2% ET 597 in H 2 0 , 3 5·0% polyisobutylene in decaline. 
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1114 Wein, Mitschka, U1brecht: 

in the form 

(38) 

where ex and n are dimensionless parameters and where D, the second invariant of the tensor 0, 
can be replaced by invariants of other kinematic tensors having the dimension of reciprocal 
time, or their suitable combination. 

EXA.1\U'LE OF THIXOTROPHIC AUTOMORPHIC MATERIAL 

Fredrickson18 has recently published a model of thixotrophic behaviour of suspensions. His 
model, including in the simplest case four constants: 110 and 1/00 with the dimension of viscosity, 
A. with the dimension of time and with the dimension of reciprocal stress 

-r =110, (39) 

(40) 

foresees a number of phenomena observed with thixotrophic suspensions, namely: 1. For visco
metric flows, when DlljDt = 0, the equation Fell, D) = 0 represents implicitely the course of 
viscosity characteristic. 2. Thixotrophic relaxations, i.e. hysteresis loops on the dependence 
of D on r at programmed time changes of D, resp. r, and transitions from one viscosity value 
to another at step changes of shear rate from one non-zero value to another. This transition is 
usually characterized by exponential functions of time. 

When we need the model of thixotrophic behaviour to be automorphic, the function F can be 
supposed for inst. in the form 

(41) 

With the exception that this model fails for D = 0, when F(II , D) = 0, it expresses qualitatively the 
same phenomena as Fredrickson' s model, especially: 1. For visco metric flows, the viscosity 
characteristics, i.e. the function F(II, D) = 0 is determined by the power model: 

r = I/D = KDn. (42) 

2. At a step ch:lnge of shear rate in the viscometric flow from a non-zero value Do to the non
zero value Dl at the instant t = 0, the time course of the instantaneous apparent viscosity 
on time can be expressed in the form 

(43) 

which is in agreement with experimentally determined dependences II(t) for some of thixotrophic 
suspensions 18, provided it is possible to express the course of viscosity characteristics in the 
considered range of shear rate by a power model. 
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CONCLUSIONS 

The conclusions of a theoretical analysis of formal properties of automorphic mate
rial functions are: 1. Automorphy of constitutive relations in an indispensable 
condition for writing the normalized mathematical flow model is the form including 
as the only independent criteria of dynamic similarity Rea and St, eventually other 
simplexes of geometrical similarity, with only geometrical parameters, and simplexes 
of rheological similarity with only material constants which can be, however, directly 
formulated as dimensionless. In case of steady flows of material with automorphic 
viscosity characteristics Rea is the only determining criterion of dynamic similarity 
including operational parameters. In the case when inertial forces can be completely 
neglected, the formulation of hydrodynamic problem does not include any 
limitation concerning the values of parameters Uc' Rc' tc or their ratios . 2. The most 
general automorphic relation between two quantities is a power-law. The conse
quence of automorphy is the possibility to reduce the number of dimensional para
meters in the relations between two quantities of different dimensions from two 
to one. 

As the description of non-linear viscosity characteristics by the power model was 
the only case when in the engineering of non-Newtonian liquids the automorphic 
or power relation were used, and since the formal properties of automorphic rela
tions seem to us for the above mentioned reasons to be very suitable especiaJly for 
engineering application, we have presented several other less trivial cases of auto
morphic formulae. Material derivatives according to time DIDt in them are gene
rally normalized by invariants of kinematic tensors having the dimension of time 
i.e. for example in the form (liD. DIDt). We have shown that they are able at least 
qualitatively to describe such rheological phenomena as the existence of normal 
stresses, visco-elastic and thixotrophic relaxations. Even in these cases the main 
advantages of automorphic models are preserved which can be considered to be the 
consequence of existence of the only dimensional parameter K in constitutive rela
tions. 

These advantages are for practical purposes especially in the possibility. to perform 
model experiments with the original material on smaller models with the exact 
modeJling conditions preserved because Re' == idem requires only fulfillment of the . 
condition 

U; - nR~ =const 

and St == idem can be, if necessary, fulfilled by a suitable choice of tc on the model. 
In the case when inertial effects can be neglected and the density of liquid is not 
a parameter which must be included into dimensionless correlations, we can choose 
Uc as well as Rc without limitations if the inequality Re' ~ 1 is fulfilled. 

The:'Quthors' are grateful to Dr V. Kahil' for valuable discllssiotis and motivating comments. 
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p 

LIST OF SYMBOLS 

second invariant of shear rate tensor; arbitrary invariant of kinematic tensors or 
their combination (s -I) 
shear rate tensor (s -I) 
material constant (s-~) 
normalized shear rate, Eq. (lOb) (1) 
normalized shear rate tensor, Eq . (lOa) (1) 
normalized constitutive functional l 

material constant (dimensional) of the power-law model (dyn cm - 2 S +") 
constant (dimensional) of automorphic model, Eq. U8c) (dyn cm- 2 sma (s» 
integration constant in Eq. (27) (1) 
dimensionless apparent viscosity Eq. (7) 
flow index, affects dimension of constant K (I) 
dimensionless shear rate 
hydrodynamic potential (dyn cm - 2) 
normalized hydrodynamic potential (1) 
dynamic operating parameter I (dyn cm - 2) 
characteristic length of the flow situation (cm) 
time (s) 
material con,stant (s) 
operating parameter, characteristic time difference in the basically non-stationary 
hydrodynamic problems I , it is dependent on Rei Ue (s) 

relaxation time defined by Truesdell (s) 
normalized time variable (I) 
characteristic velocity (cm s - I) 
velocity (cm S-I) 
dimensionless material constants in automorphic constitutive relations, simplexes 
of rheological similarity (1) 

material constant of constitutive relation of second order viscoelastic material Eq. 
(34) (dyn cm - 2 S2) 

material constant of constitutive relation of second order viscoelastic material Eq. 
(34) (dyn cm - 2 s2) 

110 material constant of constitutive relation of second order viscoelastic material Eq. (34) 
(dyn cm- 2 s2) 

apparent viscosity, Eq. (5), material function (dyn cm - 2 s) 
17( material constant (dyn cm- 2 s) 
[) dimensionless shear stress, Eq. (8e) 

density (g cm - 3) 

a 1 ,a2 first and second difference of normal stresses, material functions (dyn em - 2) 
T second invariant of shear stress tensor, material function (dyn cm - 2) 

TJ material constant (dyn cm- 2 ) 

shear stress tensor, deviator of shear tensor (dyn cm - 2) 
V operator Nabla (em-I) 
V* = Re V normalized operator Nabla (1) 

Dimensionless Numbers 

B dynamic number of flow similarity for non-automorphic constitutive relations, Eq. (2) 

Collection Czechoslov. Chem. Commun. /Vol. 37/ (1972) 
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Cr modified Euler number for creeping flows (Creeping number) for non-automorphic 
constitutive relations, Eq. (J 3) 

Cra Creeping number for automorphic relations, Eq. (21) 
Cr' Creeping number for power-law relations, Eq. (31) 
He generalized Hedstrom number, Eq. (1) 
Re Reynolds number for non-Newtonian liquids 
ReI Reynolds number for non-automorphic constitutive relations, Eq. (14) 
Rea Reynolds number for automorphic constitutive relations, Eq. (20) 
Re' Reynolds number for power-law relations, Eq. (30) 
St Strouhal number for basically non-stationary flows I , Eq. (3) 
Ve viscoelastic number, simplex of rheological similarity for time-dependent liquids 1 
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